Computing zeta functions in families of Ca,b curves using deformation

نویسندگان

  • Wouter Castryck
  • Hendrik Hubrechts
  • Frederik Vercauteren
چکیده

We apply deformation theory to compute zeta functions in a family of Ca,b curves over a finite field of small characteristic. The method combines Denef and Vercauteren’s extension of Kedlaya’s algorithm to Ca,b curves with Hubrechts’ recent work on point counting on hyperelliptic curves using deformation. As a result, it is now possible to generate Ca,b curves suitable for use in cryptography in a matter of minutes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Zeta Functions in Families of Ca, b

We apply deformation theory to compute zeta functions in a family of Ca,b curves over a finite field of small characteristic. The method combines Denef and Vercauteren’s extension of Kedlaya’s algorithm to Ca,b curves with Hubrechts’ recent work on point counting on hyperelliptic curves using deformation. As a result, it is now possible to generate Ca,b curves suitable for use in cryptography i...

متن کامل

Point Counting in Families of Hyperelliptic Curves

Let EΓ be a family of hyperelliptic curves defined by Y 2 = Q(X,Γ), where Q is defined over a small finite field of odd characteristic. Then with γ in an extension degree n field over this small field, we present a deterministic algorithm for computing the zeta function of the curve Eγ by using Dwork deformation in rigid cohomology. The complexity of the algorithm is O(n) and it needs O(n) bits...

متن کامل

A Robust RBF-ANN Model to Predict the Hot Deformation Flow Curves of API X65 Pipeline Steel

Abstract In this research, a radial basis function artificial neural network (RBF-ANN) model was developed to predict the hot deformation flow curves of API X65 pipeline steel. The results of the developed model was compared with the results of a new phenomenological model that has recently been developed based on a power function of Zener-Hollomon parameter and a third order polynomial functio...

متن کامل

Zeta Functions for Curves and Log Canonical Models

The topological zeta function and Igusa's local zeta function are respectively a geometrical invariant associated to a complex polynomial f and an arithmetical invariant associated to a polynomial f over a p{adic eld. When f is a polynomial in two variables we prove a formula for both zeta functions in terms of the so{called log canonical model of f ?1 f0g in A 2. This result yields moreover a ...

متن کامل

Asymptotic properties of zeta functions over finite fields

In this paper we study asymptotic properties of families of zeta and L-functions over finite fields. We do it in the context of three main problems: the basic inequality, the Brauer–Siegel type results and the results on distribution of zeroes. We generalize to this abstract setting the results of Tsfasman, Vlăduţ and Lachaud, who studied similar problems for curves and (in some cases) for vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007